Compute the de-sparsified (sometimes called "de-biased") glasso estimator with the approach described in Equation 7 of Jankova and Van De Geer (2015) . The basic idea is to undo \(L_1\)-regularization, in order to compute p-values and confidence intervals (i.e., to make statistical inference).

desparsify(object, ...)

Arguments

object

An object of class ggmncv.

...

Currently ignored.

Value

The de-sparsified estimates, including

  • Theta: De-sparsified precision matrix

  • P: De-sparsified partial correlation matrix

Details

According to Jankova and Van De Geer (2015) , the de-sparisifed estimator, \(\hat{\mathrm{\bf T}}\), is defined as

\(\hat{\mathrm{\bf T}} = 2\hat{\boldsymbol{\Theta}} - \hat{\boldsymbol{\Theta}}\hat{\mathrm{\bf R}}\hat{\boldsymbol{\Theta}},\)

where \(\hat{\boldsymbol{\Theta}}\) denotes the graphical lasso estimator of the precision matrix and \(\hat{\mathrm{\bf R}}\) is the sample correlation matrix. Further details can be found in Section 2 ("Main Results") of Jankova and Van De Geer (2015) .

This approach is built upon earlier work on the de-sparsified lasso estimator (Javanmard and Montanari 2014; Van de Geer et al. 2014; Zhang and Zhang 2014)

Note

This assumes (reasonably) Gaussian data, and should not to be expected to work for, say, polychoric correlations. Further, all work to date has only looked at the graphical lasso estimator, and not de-sparsifying nonconvex regularization. Accordingly, it is probably best to set penalty = "lasso" in ggmncv.

This function only provides the de-sparsified estimator and not p-values or confidence intervals (see inference).

References

Jankova J, Van De Geer S (2015). “Confidence intervals for high-dimensional inverse covariance estimation.” Electronic Journal of Statistics, 9(1), 1205--1229.

Javanmard A, Montanari A (2014). “Confidence intervals and hypothesis testing for high-dimensional regression.” The Journal of Machine Learning Research, 15(1), 2869--2909.

Van de Geer S, B昼㹣hlmann P, Ritov Y, Dezeure R (2014). “On asymptotically optimal confidence regions and tests for high-dimensional models.” The Annals of Statistics, 42(3), 1166--1202.

Zhang C, Zhang SS (2014). “Confidence intervals for low dimensional parameters in high dimensional linear models.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(1), 217--242.

Examples

# data
Y <- GGMncv::Sachs[,1:5]

n <- nrow(Y)
p <- ncol(Y)

# fit model
# note: fix lambda, as in the reference
fit <- ggmncv(cor(Y), n = nrow(Y),
              progress = FALSE,
              penalty = "lasso",
              lambda = sqrt(log(p)/n))

# fit model
# note: no regularization
fit_non_reg <- ggmncv(cor(Y), n = nrow(Y),
                      progress = FALSE,
                      penalty = "lasso",
                      lambda = 0)


# remove (some) bias and sparsity
That <- desparsify(fit)

# graphical lasso estimator
fit$P
#>             [,1]        [,2]        [,3]        [,4]       [,5]
#> [1,]  0.00000000 -0.09592018  0.10347554  0.00000000 -0.3163087
#> [2,] -0.09592018  0.00000000  0.22902674  0.31104348  0.1749705
#> [3,]  0.10347554  0.22902674  0.00000000  0.07298544 -0.4440013
#> [4,]  0.00000000  0.31104348  0.07298544  0.00000000 -0.2600128
#> [5,] -0.31630867  0.17497053 -0.44400133 -0.26001275  0.0000000

# de-sparsified estimator
That$P
#>              [,1]       [,2]        [,3]         [,4]       [,5]
#> [1,]  0.000000000 -0.1094239  0.10948543  0.001852132 -0.3202569
#> [2,] -0.109423934  0.0000000  0.26145644  0.335307844  0.2114870
#> [3,]  0.109485428  0.2614564  0.00000000  0.059653978 -0.4636671
#> [4,]  0.001852132  0.3353078  0.05965398  0.000000000 -0.2804660
#> [5,] -0.320256910  0.2114870 -0.46366714 -0.280466031  0.0000000

# mle
fit_non_reg$P
#>              [,1]       [,2]        [,3]         [,4]       [,5]
#> [1,]  0.000000000 -0.1101030  0.10995010  0.002016594 -0.3192876
#> [2,] -0.110102999  0.0000000  0.26561295  0.337956876  0.2162442
#> [3,]  0.109950103  0.2656129  0.00000000  0.056272312 -0.4664779
#> [4,]  0.002016594  0.3379569  0.05627231  0.000000000 -0.2833199
#> [5,] -0.319287553  0.2162442 -0.46647791 -0.283319888  0.0000000