The fitted model from ggmncv
contains a lot
of information, most of which is not immediately useful for most use
cases. This function extracts the weighted adjacency
(partial correlation network) and adjacency matrices.
get_graph(x, ...)
x | An object of class |
---|---|
... | Currently ignored. |
P
: Weighted adjacency matrix (partial correlation network)
adj
: Adjacency matrix
Y <- na.omit(bfi[,1:5]) fit <- ggmncv(cor(Y), n = nrow(Y), progress = FALSE) get_graph(fit) #> $P #> [,1] [,2] [,3] [,4] [,5] #> [1,] 0.0000000 -0.2435686 -0.1110675 0.0000000 0.0000000 #> [2,] -0.2435686 0.0000000 0.2849497 0.1659666 0.1578954 #> [3,] -0.1110675 0.2849497 0.0000000 0.1787385 0.3600141 #> [4,] 0.0000000 0.1659666 0.1787385 0.0000000 0.1204465 #> [5,] 0.0000000 0.1578954 0.3600141 0.1204465 0.0000000 #> #> $adj #> [,1] [,2] [,3] [,4] [,5] #> [1,] 1 1 1 0 0 #> [2,] 1 1 1 1 1 #> [3,] 1 1 1 1 1 #> [4,] 0 1 1 1 1 #> [5,] 0 1 1 1 1 #> #> attr(,"class") #> [1] "graph"