There is a direct correspondence between the inverse covariance matrix and multiple regression (Kwan 2014; Stephens 1998) . This readily allows for converting the GGM parameters to regression coefficients. All data types are supported.
Usage
# S3 method for class 'estimate'
coef(object, iter = NULL, progress = TRUE, ...)Value
An object of class coef, containting two lists.
betasA list of length p, each containing a p - 1 byitermatrix of posterior samplesobjectAn object of classestimate(the fitted model).
References
Kwan CC (2014).
“A regression-based interpretation of the inverse of the sample covariance matrix.”
Spreadsheets in Education, 7(1), 4613.
Stephens G (1998).
“On the Inverse of the Covariance Matrix in Portfolio Analysis.”
The Journal of Finance, 53(5), 1821–1827.
Examples
# \donttest{
# note: iter = 250 for demonstrative purposes
#########################
### example 1: binary ###
#########################
# data
Y = matrix( rbinom(100, 1, .5), ncol=4)
# fit model
fit <- estimate(Y, type = "binary",
iter = 250,
progress = TRUE)
#> BGGM: Posterior Sampling
#> BGGM: Finished
# summarize the partial correlations
reg <- coef(fit, progress = FALSE)
# summary
summ <- summary(reg)
summ
#> BGGM: Bayesian Gaussian Graphical Models
#> ---
#> Type: binary
#> Formula: ~ 1
#> ---
#> Call:
#> estimate(Y = Y, type = "binary", iter = 250, progress = TRUE)
#> ---
#> Coefficients:
#>
#> 1:
#> Node Post.mean Post.sd Cred.lb Cred.ub
#> 2 0.309 0.321 -0.352 0.870
#> 3 -0.268 0.292 -0.780 0.414
#> 4 -0.042 0.278 -0.527 0.482
#>
#> 2:
#> Node Post.mean Post.sd Cred.lb Cred.ub
#> 1 0.317 0.331 -0.335 0.901
#> 3 -0.109 0.299 -0.665 0.470
#> 4 -0.007 0.315 -0.505 0.636
#>
#> 3:
#> Node Post.mean Post.sd Cred.lb Cred.ub
#> 1 -0.299 0.353 -0.901 0.608
#> 2 -0.124 0.348 -0.816 0.510
#> 4 -0.094 0.299 -0.627 0.498
#>
#> 4:
#> Node Post.mean Post.sd Cred.lb Cred.ub
#> 1 -0.041 0.349 -0.601 0.687
#> 2 -0.037 0.387 -0.757 0.742
#> 3 -0.100 0.326 -0.775 0.519
#>
# }
