
Package index
-
bggm_missing() - GGM: Missing Data
-
impute_data() - Obtain Imputed Datasets
Estimation Based Methods
‘Estimation’ indicates that the methods to not employ Bayes factor testing. Rather, the graph is determined with the posterior distribution. The prior distribtuion has a minimal influence.
-
estimate() - GGM: Estimation
-
coef(<estimate>) - Compute Regression Parameters for
estimateObjects
-
predict(<estimate>) - Model Predictions for
estimateObjects
-
plot(<summary.estimate>) - Plot
summary.estimateObjects
-
select(<estimate>) - Graph Selection for
estimateObjects
-
summary(<estimate>) - Summary method for
estimate.defaultobjects
Exploratory Hypothesis Testing
Bayes factor testing to determine the graph. ‘Exploratory’ reflects that there is not a specific hypothesis being test.
-
explore() - GGM: Exploratory Hypothesis Testing
-
coef(<explore>) - Compute Regression Parameters for
exploreObjects
-
predict(<explore>) - Model Predictions for
exploreObjects
-
plot(<summary.explore>) - Plot
summary.exploreObjects
-
plot(<summary.select.explore>) - Plot
summary.select.exploreObjects
-
select(<explore>) - Graph selection for
exploreObjects
-
summary(<explore>) - Summary Method for
explore.defaultObjects
-
summary(<select.explore>) - Summary Method for
select.exploreObjects
-
confirm() - GGM: Confirmatory Hypothesis Testing
-
plot(<confirm>) - Plot
confirmobjects
Posterior Predictive Check
Compare groups with a posterior predictive check, where the null model is that the groups are equal. This works with any number of groups. There is also an option to compare the groups with a user defined test-statistic.
-
ggm_compare_ppc() - GGM Compare: Posterior Predictive Check
-
plot(<ggm_compare_ppc>) - Plot
ggm_compare_ppcObjects
Partial Correlation Differences
Pairwise comparisons for each partial correlation in the respective models. This can be used for any number of groups. There is also an analytical solution.
-
ggm_compare_estimate() - GGM Compare: Estimate
-
plot(<summary.ggm_compare_estimate>) - Plot
summary.ggm_compare_estimateObjects
-
select(<ggm_compare_estimate>) - Graph Selection for
ggm_compare_estimateObjects
-
summary(<ggm_compare_estimate>) - Summary method for
ggm_compare_estimateobjects
Exploratory Hypothesis Testing
Pairwise comparisions with exploratory hypothesis testing. This method can be used to compare several groups simultaneously.
-
ggm_compare_explore() - GGM Compare: Exploratory Hypothesis Testing
-
plot(<summary.ggm_compare_explore>) - Plot
summary.ggm_compare_exploreObjects
-
select(<ggm_compare_explore>) - Graph selection for
ggm_compare_exploreObjects
-
summary(<ggm_compare_explore>) - Summary Method for
ggm_compare_exploreObjects
-
ggm_compare_confirm() - GGM Compare: Confirmatory Hypothesis Testing
-
plot(<confirm>) - Plot
confirmobjects
-
predictability() - Predictability: Bayesian Variance Explained (R2)
-
plot(<predictability>) - Plot
predictabilityObjects
-
summary(<predictability>) - Summary Method for
predictabilityObjects
Network Statistics
Compute network statistics from a partial correlation matrix or a weighted adjacency matrix.
-
roll_your_own() - Compute Custom Network Statistics
-
plot(<roll_your_own>) - Plot
roll_your_ownObjects
Partial Correlation Sums
Compute the sum of partial correlations within (one group) or between (two groups) GGMs. This can be used to compare sums.
-
pcor_sum() - Partial Correlation Sum
-
plot(<pcor_sum>) - Plot
pcor_sumObject
Network Plot
Network plot for the selected graphs. This works with all method for which there is a selected graph.
-
plot(<select>) - Network Plot for
selectObjects
Graphical VAR (vector autoregression)
A variety of methods for time series data. These particular models are VAR(1) models which are also known as time series chain graphical models.
Estimation
‘Estimation’ indicates that the methods to not employ Bayes factor testing. Rather, the graph is determined with the posterior distribution. The prior distribtuion has a minimal influence.
-
var_estimate() - VAR: Estimation
-
select(<var_estimate>) - Graph Selection for
var.estimateObject
-
summary(<var_estimate>) - Summary Method for
var_estimateObjects
-
plot(<summary.var_estimate>) - Plot
summary.var_estimateObjects
-
predict(<var_estimate>) - Model Predictions for
var_estimateObjects
-
convergence() - MCMC Convergence
-
fisher_z_to_r() - Fisher Z Back Transformation
-
fisher_r_to_z() - Fisher Z Transformation
-
gen_ordinal() - Generate Ordinal and Binary data
-
pcor_to_cor() - Compute Correlations from the Partial Correlations
-
pcor_mat() - Extract the Partial Correlation Matrix
-
plot_prior() - Plot: Prior Distribution
-
posterior_samples() - Extract Posterior Samples
-
map() - Maximum A Posteriori Precision Matrix
-
regression_summary() - Summarary Method for Multivariate or Univarate Regression
-
summary(<coef>) - Summarize
coefObjects
-
weighted_adj_mat() - Extract the Weighted Adjacency Matrix
-
zero_order_cors() - Zero-Order Correlations
-
asd_ocd - Data: Autism and Obssesive Compulsive Disorder
-
bfi - Data: 25 Personality items representing 5 factors
-
csws - Data: Contingencies of Self-Worth Scale (CSWS)
-
depression_anxiety_t1 - Data: Depression and Anxiety (Time 1)
-
depression_anxiety_t2 - Data: Depression and Anxiety (Time 2)
-
gss - Data: 1994 General Social Survey
-
ifit - Data: ifit Intensive Longitudinal Data
-
iri - Data: Interpersonal Reactivity Index (IRI)
-
ptsd - Data: Post-Traumatic Stress Disorder
-
ptsd_cor1 - Data: Post-Traumatic Stress Disorder (Sample # 1)
-
ptsd_cor2 - Data: Post-Traumatic Stress Disorder (Sample # 2)
-
ptsd_cor3 - Data: Post-Traumatic Stress Disorder (Sample # 3)
-
ptsd_cor4 - Data: Post-Traumatic Stress Disorder (Sample # 4)
-
rsa - Data: Resilience Scale of Adults (RSA)
-
Sachs - Data: Sachs Network
-
tas - Data: Toronto Alexithymia Scale (TAS)
-
women_math - Data: Women and Mathematics