Package index
-
bggm_missing()
- GGM: Missing Data
-
impute_data()
- Obtain Imputed Datasets
Estimation Based Methods
‘Estimation’ indicates that the methods to not employ Bayes factor testing. Rather, the graph is determined with the posterior distribution. The prior distribtuion has a minimal influence.
-
estimate()
- GGM: Estimation
-
coef(<estimate>)
- Compute Regression Parameters for
estimate
Objects
-
predict(<estimate>)
- Model Predictions for
estimate
Objects
-
plot(<summary.estimate>)
- Plot
summary.estimate
Objects
-
select(<estimate>)
- Graph Selection for
estimate
Objects
-
summary(<estimate>)
- Summary method for
estimate.default
objects
Exploratory Hypothesis Testing
Bayes factor testing to determine the graph. ‘Exploratory’ reflects that there is not a specific hypothesis being test.
-
explore()
- GGM: Exploratory Hypothesis Testing
-
coef(<explore>)
- Compute Regression Parameters for
explore
Objects
-
predict(<explore>)
- Model Predictions for
explore
Objects
-
plot(<summary.explore>)
- Plot
summary.explore
Objects
-
plot(<summary.select.explore>)
- Plot
summary.select.explore
Objects
-
select(<explore>)
- Graph selection for
explore
Objects
-
summary(<explore>)
- Summary Method for
explore.default
Objects
-
summary(<select.explore>)
- Summary Method for
select.explore
Objects
-
confirm()
- GGM: Confirmatory Hypothesis Testing
-
plot(<confirm>)
- Plot
confirm
objects
Posterior Predictive Check
Compare groups with a posterior predictive check, where the null model is that the groups are equal. This works with any number of groups. There is also an option to compare the groups with a user defined test-statistic.
-
ggm_compare_ppc()
- GGM Compare: Posterior Predictive Check
-
plot(<ggm_compare_ppc>)
- Plot
ggm_compare_ppc
Objects
Partial Correlation Differences
Pairwise comparisons for each partial correlation in the respective models. This can be used for any number of groups. There is also an analytical solution.
-
ggm_compare_estimate()
- GGM Compare: Estimate
-
plot(<summary.ggm_compare_estimate>)
- Plot
summary.ggm_compare_estimate
Objects
-
select(<ggm_compare_estimate>)
- Graph Selection for
ggm_compare_estimate
Objects
-
summary(<ggm_compare_estimate>)
- Summary method for
ggm_compare_estimate
objects
Exploratory Hypothesis Testing
Pairwise comparisions with exploratory hypothesis testing. This method can be used to compare several groups simultaneously.
-
ggm_compare_explore()
- GGM Compare: Exploratory Hypothesis Testing
-
plot(<summary.ggm_compare_explore>)
- Plot
summary.ggm_compare_explore
Objects
-
select(<ggm_compare_explore>)
- Graph selection for
ggm_compare_explore
Objects
-
summary(<ggm_compare_explore>)
- Summary Method for
ggm_compare_explore
Objects
-
ggm_compare_confirm()
- GGM Compare: Confirmatory Hypothesis Testing
-
plot(<confirm>)
- Plot
confirm
objects
-
predictability()
- Predictability: Bayesian Variance Explained (R2)
-
plot(<predictability>)
- Plot
predictability
Objects
-
summary(<predictability>)
- Summary Method for
predictability
Objects
Network Statistics
Compute network statistics from a partial correlation matrix or a weighted adjacency matrix.
-
roll_your_own()
- Compute Custom Network Statistics
-
plot(<roll_your_own>)
- Plot
roll_your_own
Objects
Partial Correlation Sums
Compute the sum of partial correlations within (one group) or between (two groups) GGMs. This can be used to compare sums.
-
pcor_sum()
- Partial Correlation Sum
-
plot(<pcor_sum>)
- Plot
pcor_sum
Object
Network Plot
Network plot for the selected graphs. This works with all method for which there is a selected graph.
-
plot(<select>)
- Network Plot for
select
Objects
Graphical VAR (vector autoregression)
A variety of methods for time series data. These particular models are VAR(1) models which are also known as time series chain graphical models.
Estimation
‘Estimation’ indicates that the methods to not employ Bayes factor testing. Rather, the graph is determined with the posterior distribution. The prior distribtuion has a minimal influence.
-
var_estimate()
- VAR: Estimation
-
select(<var_estimate>)
- Graph Selection for
var.estimate
Object
-
summary(<var_estimate>)
- Summary Method for
var_estimate
Objects
-
plot(<summary.var_estimate>)
- Plot
summary.var_estimate
Objects
-
predict(<var_estimate>)
- Model Predictions for
var_estimate
Objects
-
convergence()
- MCMC Convergence
-
fisher_z_to_r()
- Fisher Z Back Transformation
-
fisher_r_to_z()
- Fisher Z Transformation
-
gen_ordinal()
- Generate Ordinal and Binary data
-
pcor_to_cor()
- Compute Correlations from the Partial Correlations
-
pcor_mat()
- Extract the Partial Correlation Matrix
-
plot_prior()
- Plot: Prior Distribution
-
posterior_samples()
- Extract Posterior Samples
-
map()
- Maximum A Posteriori Precision Matrix
-
regression_summary()
- Summarary Method for Multivariate or Univarate Regression
-
summary(<coef>)
- Summarize
coef
Objects
-
weighted_adj_mat()
- Extract the Weighted Adjacency Matrix
-
zero_order_cors()
- Zero-Order Correlations
-
asd_ocd
- Data: Autism and Obssesive Compulsive Disorder
-
bfi
- Data: 25 Personality items representing 5 factors
-
csws
- Data: Contingencies of Self-Worth Scale (CSWS)
-
depression_anxiety_t1
- Data: Depression and Anxiety (Time 1)
-
depression_anxiety_t2
- Data: Depression and Anxiety (Time 2)
-
gss
- Data: 1994 General Social Survey
-
ifit
- Data: ifit Intensive Longitudinal Data
-
iri
- Data: Interpersonal Reactivity Index (IRI)
-
ptsd
- Data: Post-Traumatic Stress Disorder
-
ptsd_cor1
- Data: Post-Traumatic Stress Disorder (Sample # 1)
-
ptsd_cor2
- Data: Post-Traumatic Stress Disorder (Sample # 2)
-
ptsd_cor3
- Data: Post-Traumatic Stress Disorder (Sample # 3)
-
ptsd_cor4
- Data: Post-Traumatic Stress Disorder (Sample # 4)
-
rsa
- Data: Resilience Scale of Adults (RSA)
-
Sachs
- Data: Sachs Network
-
tas
- Data: Toronto Alexithymia Scale (TAS)
-
women_math
- Data: Women and Mathematics