Convert the partial correlation matrices into correlation matrices. To our knowledge, this is the only Bayesian implementation in R that can estiamte Pearson's, tetrachoric (binary), polychoric (ordinal with more than two cateogries), and rank based correlation coefficients.

pcor_to_cor(object, iter = NULL)

Arguments

object

An object of class estimate or explore

iter

numeric. How many iterations (i.e., posterior samples) should be used ? The default uses all of the samples, but note that this can take a long time with large matrices.

Value

  • R An array including the correlation matrices (of dimensions p by p by iter)

  • R_mean Posterior mean of the correlations (of dimensions p by p)

Note

The 'default' prior distributions are specified for partial correlations in particular. This means that the implied prior distribution will not be the same for the correlations.

Examples

# \donttest{ # note: iter = 250 for demonstrative purposes # data Y <- BGGM::ptsd ######################### ###### continuous ####### ######################### # estimate the model fit <- estimate(Y, iter = 250, progress = FALSE) # compute correlations cors <- pcor_to_cor(fit) ######################### ###### ordinal ######### ######################### # first level must be 1 ! Y <- Y + 1 # estimate the model fit <- estimate(Y, type = "ordinal", iter = 250, progress = FALSE)
#> Warning: imputation during model fitting is #> currently only implemented for 'continuous' data.
# compute correlations cors <- pcor_to_cor(fit) ######################### ####### mixed ###### ######################### # rank based correlations # estimate the model fit <- estimate(Y, type = "mixed", iter = 250, progress = FALSE)
#> Warning: imputation during model fitting is #> currently only implemented for 'continuous' data.
# compute correlations cors <- pcor_to_cor(fit) # }