Visualize the conditional (in)dependence structure.
# S3 method for select plot( x, layout = "circle", pos_col = "#009E73", neg_col = "#D55E00", node_size = 10, edge_magnify = 1, groups = NULL, palette = "Set3", ... )
x | An object of class |
---|---|
layout | Character string. Which graph layout (defaults is |
pos_col | Character string. Color for the positive edges (defaults to |
neg_col | Character string. Color for the negative edges (defaults to |
node_size | Numeric. The size of the nodes (defaults to |
edge_magnify | Numeric. A value that is multiplied by the edge weights. This increases (> 1) or decrease (< 1) the line widths (defaults to 1). |
groups | A character string of length p (the number of nodes in the model). This indicates groups of nodes that should be the same color (e.g., "clusters" or "communities"). |
palette | A character string sepcifying the palette for the |
... | Additional options passed to ggnet2 |
An object (or list of objects) of class ggplot
that can then be further customized.
A more extensive example of a custom plot is provided here
# \donttest{ ######################### ### example 1: one ggm ## ######################### # data Y <- bfi[,1:25] # estimate fit <- estimate(Y, iter = 250, progress = FALSE) # "communities" comm <- substring(colnames(Y), 1, 1) # edge set E <- select(fit) # plot edge set plt_E <- plot(E, edge_magnify = 5, palette = "Set1", groups = comm) ############################# ### example 2: ggm compare ## ############################# # compare males vs. females # data Y <- bfi[,1:26] Ym <- subset(Y, gender == 1, select = -gender) Yf <- subset(Y, gender == 2, select = -gender) # estimate fit <- ggm_compare_estimate(Ym, Yf, iter = 250, progress = FALSE) # "communities" comm <- substring(colnames(Ym), 1, 1) # edge set E <- select(fit) # plot edge set plt_E <- plot(E, edge_magnify = 5, palette = "Set1", groups = comm) # }