
Summarary Method for Multivariate or Univarate Regression
Source:R/regression_summary.R
regression_summary.RdSummarary Method for Multivariate or Univarate Regression
Examples
# \donttest{
# note: iter = 250 for demonstrative purposes
# data
Y <- bfi
Y <- subset(Y, select = c("A1", "A2",
"gender", "education"))
fit_mv_ordinal <- estimate(Y, formula = ~ gender + as.factor(education),
type = "continuous",
iter = 250,
progress = TRUE)
#> BGGM: Posterior Sampling
#> BGGM: Finished
regression_summary(fit_mv_ordinal)
#> BGGM: Bayesian Gaussian Graphical Models
#> ---
#> Type: continuous
#> Formula: ~ gender + as.factor(education)
#> ---
#> Coefficients:
#>
#> A1
#> Post.mean Post.sd Cred.lb Cred.ub
#> (Intercept) 1.065 0.137 0.814 1.330
#> gender -0.515 0.064 -0.644 -0.405
#> as.factor(education)2 0.127 0.134 -0.124 0.393
#> as.factor(education)3 -0.130 0.098 -0.314 0.093
#> as.factor(education)4 -0.422 0.119 -0.644 -0.192
#> as.factor(education)5 -0.552 0.107 -0.752 -0.343
#> ---
#> A2
#> Post.mean Post.sd Cred.lb Cred.ub
#> (Intercept) -0.868 0.099 -1.060 -0.689
#> gender 0.484 0.050 0.391 0.578
#> as.factor(education)2 -0.033 0.094 -0.229 0.149
#> as.factor(education)3 0.117 0.081 -0.036 0.269
#> as.factor(education)4 -0.038 0.097 -0.236 0.153
#> as.factor(education)5 0.080 0.086 -0.080 0.233
#> ---
#> Residual Correlation Matrix:
#> A1 A2
#> A1 1.000 -0.314
#> A2 -0.314 1.000
#> ---
# }