Summarize the posterior distribution of each partial correlation with the posterior mean and standard deviation.

# S3 method for estimate
summary(object, col_names = TRUE, cred = 0.95, ...)

Arguments

object

An object of class estimate

col_names

Logical. Should the summary include the column names (default is TRUE)? Setting to FALSE includes the column numbers (e.g., 1--2).

cred

Numeric. The credible interval width for summarizing the posterior distributions (defaults to 0.95; must be between 0 and 1).

...

Currently ignored.

Value

A dataframe containing the summarized posterior distributions.

See also

Examples

# \donttest{ # data Y <- ptsd[,1:5] fit <- estimate(Y, iter = 250, progress = FALSE) summary(fit)
#> BGGM: Bayesian Gaussian Graphical Models #> --- #> Type: continuous #> Analytic: FALSE #> Formula: #> Posterior Samples: 250 #> Observations (n): #> Nodes (p): 5 #> Relations: 10 #> --- #> Call: #> estimate(Y = Y, iter = 250, progress = FALSE) #> --- #> Estimates: #> Relation Post.mean Post.sd Cred.lb Cred.ub #> B1--B2 0.232 0.062 0.109 0.361 #> B1--B3 0.053 0.066 -0.066 0.192 #> B2--B3 0.496 0.052 0.388 0.595 #> B1--B4 0.327 0.066 0.201 0.445 #> B2--B4 -0.038 0.072 -0.180 0.099 #> B3--B4 0.222 0.065 0.100 0.342 #> B1--B5 0.159 0.068 0.006 0.280 #> B2--B5 0.107 0.067 -0.024 0.233 #> B3--B5 0.189 0.072 0.055 0.316 #> B4--B5 0.328 0.064 0.190 0.435 #> ---
# }