ggm_compare_estimate
objectsR/ggm_compare_estimate.default.R
summary.ggm_compare_estimate.Rd
Summarize the posterior distribution of each partial correlation difference with the posterior mean and standard deviation.
# S3 method for ggm_compare_estimate summary(object, col_names = TRUE, cred = 0.95, ...)
object | An object of class |
---|---|
col_names | Logical. Should the summary include the column names (default is |
cred | Numeric. The credible interval width for summarizing the posterior distributions (defaults to 0.95; must be between 0 and 1). |
... | Currently ignored. |
A list containing the summarized posterior distributions.
# \donttest{ # note: iter = 250 for demonstrative purposes # data Y <- bfi # males and females Ymale <- subset(Y, gender == 1, select = -c(gender, education))[,1:5] Yfemale <- subset(Y, gender == 2, select = -c(gender, education))[,1:5] # fit model fit <- ggm_compare_estimate(Ymale, Yfemale, type = "ordinal", iter = 250, prior_sd = 0.25, progress = FALSE)#> Warning: imputation during model fitting is #> currently only implemented for 'continuous' data.#> Warning: imputation during model fitting is #> currently only implemented for 'continuous' data.summary(fit)#> BGGM: Bayesian Gaussian Graphical Models #> --- #> Type: ordinal #> Analytic: FALSE #> Formula: #> Posterior Samples: 250 #> Observations (n): #> Group 1: 896 #> Group 2: 1813 #> Nodes (p): 5 #> Relations: 10 #> --- #> Call: #> ggm_compare_estimate(Ymale, Yfemale, type = "ordinal", prior_sd = 0.25, #> iter = 250, progress = FALSE) #> --- #> Estimates: #> #> #> Relation Post.mean Post.sd Cred.lb Cred.ub #> A1--A2 0.046 0.041 -0.030 0.138 #> A1--A3 -0.005 0.049 -0.098 0.086 #> A2--A3 -0.064 0.044 -0.147 0.025 #> A1--A4 0.007 0.044 -0.084 0.091 #> A2--A4 -0.007 0.045 -0.093 0.083 #> A3--A4 0.028 0.050 -0.068 0.125 #> A1--A5 0.031 0.053 -0.068 0.127 #> A2--A5 0.099 0.047 0.008 0.180 #> A3--A5 0.071 0.040 0.002 0.153 #> A4--A5 -0.022 0.043 -0.101 0.062 #> ---# }