There is a direct correspondence between the inverse covariance matrix and multiple regression (Kwan 2014; Stephens 1998) . This readily allows for converting the GGM parameters to regression coefficients. All data types are supported.
Usage
# S3 method for class 'explore'
coef(object, iter = NULL, progress = TRUE, ...)Value
An object of class coef, containting two lists.
betasA list of length p, each containing a p - 1 byitermatrix of posterior samplesobjectAn object of classexplore(the fitted model).
References
Kwan CC (2014).
“A regression-based interpretation of the inverse of the sample covariance matrix.”
Spreadsheets in Education, 7(1), 4613.
Stephens G (1998).
“On the Inverse of the Covariance Matrix in Portfolio Analysis.”
The Journal of Finance, 53(5), 1821–1827.
Examples
# \donttest{
# note: iter = 250 for demonstrative purposes
# data
Y <- ptsd[,1:4]
##########################
### example 1: ordinal ###
##########################
# fit model (note + 1, due to zeros)
fit <- explore(Y + 1,
type = "ordinal",
iter = 250,
progress = FALSE,
seed = 1234)
# summarize the partial correlations
reg <- coef(fit, progress = FALSE)
# summary
summ <- summary(reg)
summ
#> BGGM: Bayesian Gaussian Graphical Models
#> ---
#> Type: ordinal
#> Formula: ~ 1
#> ---
#> Call:
#> explore(Y = Y + 1, type = "ordinal", iter = 250, progress = FALSE,
#> seed = 1234)
#> ---
#> Coefficients:
#>
#> B1:
#> Node Post.mean Post.sd Cred.lb Cred.ub
#> B2 0.269 0.109 0.043 0.472
#> B3 0.113 0.115 -0.105 0.332
#> B4 0.401 0.084 0.225 0.554
#>
#> B2:
#> Node Post.mean Post.sd Cred.lb Cred.ub
#> B1 0.248 0.103 0.037 0.441
#> B3 0.528 0.106 0.279 0.688
#> B4 0.003 0.105 -0.183 0.200
#>
#> B3:
#> Node Post.mean Post.sd Cred.lb Cred.ub
#> B1 0.093 0.096 -0.080 0.279
#> B2 0.467 0.099 0.261 0.653
#> B4 0.315 0.089 0.154 0.488
#>
#> B4:
#> Node Post.mean Post.sd Cred.lb Cred.ub
#> B1 0.394 0.092 0.193 0.571
#> B2 0.001 0.107 -0.187 0.194
#> B3 0.378 0.104 0.172 0.582
#>
# }
