Graph Selection for var.estimate
Object
Usage
# S3 method for class 'var_estimate'
select(object, cred = 0.95, alternative = "two.sided", ...)
Arguments
- object
An object of class
VAR.estimate
.- cred
Numeric. The credible interval width for selecting the graph (defaults to 0.95; must be between 0 and 1).
- alternative
A character string specifying the alternative hypothesis. It must be one of "two.sided" (default), "greater" or "less". See note for futher details.
- ...
Currently ignored.
Value
An object of class select.var_estimate
, including
pcor_adj Adjacency matrix for the partial correlations.
beta_adj Adjacency matrix for the regression coefficients.
pcor_weighted_adj Weighted adjacency matrix for the partial correlations.
beta_weighted_adj Weighted adjacency matrix for the regression coefficients.
pcor_mu
Partial correlation matrix (posterior mean).beta_mu
A matrix including the regression coefficients (posterior mean).
Examples
# \donttest{
# data
Y <- subset(ifit, id == 1)[,-1]
# fit model with alias (var_estimate also works)
fit <- var_estimate(Y, progress = FALSE)
# select graphs
select(fit, cred = 0.95)
#> BGGM: Bayesian Gaussian Graphical Models
#> ---
#> Vector Autoregressive Model (VAR)
#> ---
#> Posterior Samples: 5000
#> Credible Interval: 95 %
#> ---
#> Call:
#> var_estimate(Y = Y, progress = FALSE)
#> ---
#> Partial Correlations:
#>
#> interested disinterested excited upset strong stressed steps
#> interested 0.000 0 0.381 -0.214 0.321 0.274 0
#> disinterested 0.000 0 0.000 0.000 0.000 0.000 0
#> excited 0.381 0 0.000 0.000 0.496 0.000 0
#> upset -0.214 0 0.000 0.000 0.000 0.355 0
#> strong 0.321 0 0.496 0.000 0.000 0.000 0
#> stressed 0.274 0 0.000 0.355 0.000 0.000 0
#> steps 0.000 0 0.000 0.000 0.000 0.000 0
#> ---
#> Coefficients:
#>
#> interested disinterested excited upset strong stressed steps
#> interested.l1 0 0.000 0 0.00 0 0.000 0
#> disinterested.l1 0 0.000 0 0.00 0 0.000 0
#> excited.l1 0 0.000 0 0.00 0 0.000 0
#> upset.l1 0 0.258 0 0.43 0 0.318 0
#> strong.l1 0 0.000 0 0.00 0 0.000 0
#> stressed.l1 0 0.000 0 0.00 0 0.000 0
#> steps.l1 0 0.000 0 0.00 0 0.000 0
#> ---
# }