Summary Method for select.explore
Objects
Usage
# S3 method for class 'select.explore'
summary(object, col_names = TRUE, ...)
Value
a data frame including the posterior mean, standard deviation, and posterior hypothesis probabilities for each relation.
Examples
# \donttest{
# data
Y <- bfi[,1:10]
# fit model
fit <- explore(Y, iter = 250,
progress = FALSE)
# edge set
E <- select(fit,
alternative = "exhaustive")
summary(E)
#> BGGM: Bayesian Gaussian Graphical Models
#> ---
#> Type: continuous
#> Alternative: exhaustive
#> ---
#> Call:
#> select.explore(object = fit, alternative = "exhaustive")
#> ---
#> Hypotheses:
#> H0: rho = 0
#> H1: rho > 0
#> H2: rho < 0
#> ---
#>
#> Relation Post.mean Post.sd.fisher Pr.H0 Pr.H1 Pr.H2
#> A1--A2 -0.246 0.020 0.000 0.000 1.000
#> A1--A3 -0.106 0.021 0.000 0.000 1.000
#> A2--A3 0.285 0.020 0.000 1.000 0.000
#> A1--A4 -0.013 0.020 0.997 0.001 0.003
#> A2--A4 0.160 0.018 0.000 1.000 0.000
#> A3--A4 0.163 0.020 0.000 1.000 0.000
#> A1--A5 -0.014 0.020 0.996 0.001 0.003
#> A2--A5 0.144 0.019 0.000 1.000 0.000
#> A3--A5 0.356 0.021 0.000 1.000 0.000
#> A4--A5 0.113 0.020 0.000 1.000 0.000
#> A1--C1 0.052 0.018 0.126 0.872 0.002
#> A2--C1 0.005 0.020 0.998 0.001 0.001
#> A3--C1 0.009 0.020 0.997 0.002 0.001
#> A4--C1 -0.046 0.019 0.570 0.003 0.426
#> A5--C1 0.062 0.021 0.064 0.935 0.001
#> A1--C2 0.070 0.019 0.001 0.999 0.000
#> A2--C2 0.008 0.019 0.997 0.002 0.001
#> A3--C2 0.031 0.020 0.977 0.022 0.001
#> A4--C2 0.149 0.018 0.000 1.000 0.000
#> A5--C2 -0.029 0.020 0.982 0.001 0.017
#> C1--C2 0.301 0.020 0.000 1.000 0.000
#> A1--C3 0.041 0.019 0.830 0.167 0.003
#> A2--C3 0.126 0.019 0.000 1.000 0.000
#> A3--C3 -0.013 0.018 0.997 0.001 0.002
#> A4--C3 -0.031 0.019 0.969 0.001 0.029
#> A5--C3 0.019 0.019 0.994 0.005 0.001
#> C1--C3 0.124 0.020 0.000 1.000 0.000
#> C2--C3 0.184 0.018 0.000 1.000 0.000
#> A1--C4 0.126 0.020 0.000 1.000 0.000
#> A2--C4 -0.015 0.021 0.996 0.001 0.003
#> A3--C4 0.013 0.018 0.997 0.002 0.001
#> A4--C4 0.018 0.019 0.995 0.004 0.001
#> A5--C4 0.006 0.020 0.997 0.002 0.001
#> C1--C4 -0.158 0.020 0.000 0.000 1.000
#> C2--C4 -0.189 0.019 0.000 0.000 1.000
#> C3--C4 -0.124 0.019 0.000 0.000 1.000
#> A1--C5 -0.026 0.020 0.988 0.001 0.011
#> A2--C5 0.043 0.018 0.680 0.317 0.003
#> A3--C5 -0.023 0.019 0.991 0.001 0.008
#> A4--C5 -0.151 0.019 0.000 0.000 1.000
#> A5--C5 -0.057 0.020 0.170 0.002 0.827
#> C1--C5 -0.038 0.019 0.907 0.002 0.090
#> C2--C5 -0.043 0.020 0.781 0.003 0.216
#> C3--C5 -0.173 0.019 0.000 0.000 1.000
#> C4--C5 0.360 0.019 0.000 1.000 0.000
# }