Skip to contents

Summarize the posterior distribution of each partial correlation and regression coefficient with the posterior mean, standard deviation, and credible intervals.

Usage

# S3 method for class 'var_estimate'
summary(object, cred = 0.95, ...)

Arguments

object

An object of class var_estimate

cred

Numeric. The credible interval width for summarizing the posterior distributions (defaults to 0.95; must be between 0 and 1).

...

Currently ignored.

Value

A dataframe containing the summarized posterior distributions, including both the partial correlations and the regression coefficients.

  • pcor_results A data frame including the summarized partial correlations

  • beta_results A list containing the summarized regression coefficients (one data frame for each outcome)

See also

Examples

# \donttest{
# data
Y <- subset(ifit, id == 1)[,-1]

# fit model with alias (var_estimate also works)
fit <- var_estimate(Y, progress = FALSE)

# summary ('pcor')
print(
summary(fit, cred = 0.95),
param = "pcor",
)
#> BGGM: Bayesian Gaussian Graphical Models 
#> --- 
#> Vector Autoregressive Model (VAR) 
#> --- 
#> Partial Correlations: 
#> 
#>                   Relation Post.mean Post.sd Cred.lb Cred.ub
#>  interested--disinterested    -0.172   0.100  -0.371   0.019
#>        interested--excited     0.382   0.094   0.192   0.554
#>     disinterested--excited    -0.172   0.101  -0.358   0.035
#>          interested--upset    -0.209   0.101  -0.404  -0.013
#>       disinterested--upset    -0.037   0.101  -0.232   0.162
#>             excited--upset    -0.110   0.107  -0.310   0.108
#>         interested--strong     0.330   0.091   0.146   0.497
#>      disinterested--strong     0.088   0.102  -0.118   0.274
#>            excited--strong     0.485   0.080   0.311   0.630
#>              upset--strong     0.089   0.110  -0.127   0.295
#>       interested--stressed     0.279   0.095   0.086   0.455
#>    disinterested--stressed     0.155   0.100  -0.056   0.345
#>          excited--stressed    -0.175   0.102  -0.374   0.029
#>            upset--stressed     0.356   0.092   0.166   0.520
#>           strong--stressed    -0.006   0.107  -0.211   0.208
#>          interested--steps     0.088   0.108  -0.119   0.289
#>       disinterested--steps    -0.067   0.109  -0.271   0.154
#>             excited--steps    -0.010   0.110  -0.229   0.200
#>               upset--steps    -0.038   0.106  -0.258   0.160
#>              strong--steps     0.174   0.100  -0.015   0.362
#>            stressed--steps    -0.028   0.109  -0.246   0.186
#> --- 
#> 


# summary ('beta')
print(
summary(fit, cred = 0.95),
param = "beta",
)
#> BGGM: Bayesian Gaussian Graphical Models 
#> --- 
#> Vector Autoregressive Model (VAR) 
#> --- 
#> Coefficients: 
#> 
#> interested 
#> 
#>          Relation Post.mean Post.sd Cred.lb Cred.ub
#>     interested.l1     0.222   0.179  -0.147   0.571
#>  disinterested.l1    -0.049   0.122  -0.284   0.194
#>        excited.l1    -0.084   0.194  -0.464   0.303
#>          upset.l1    -0.155   0.130  -0.412   0.098
#>         strong.l1     0.027   0.173  -0.319   0.369
#>       stressed.l1    -0.018   0.121  -0.256   0.218
#>          steps.l1    -0.156   0.114  -0.379   0.067
#> ---
#> disinterested 
#> 
#>          Relation Post.mean Post.sd Cred.lb Cred.ub
#>     interested.l1    -0.015   0.181  -0.372   0.338
#>  disinterested.l1    -0.002   0.122  -0.244   0.237
#>        excited.l1    -0.180   0.196  -0.566   0.201
#>          upset.l1     0.255   0.128  -0.001   0.506
#>         strong.l1     0.170   0.175  -0.166   0.505
#>       stressed.l1    -0.010   0.120  -0.245   0.226
#>          steps.l1     0.183   0.114  -0.039   0.408
#> ---
#> excited 
#> 
#>          Relation Post.mean Post.sd Cred.lb Cred.ub
#>     interested.l1     0.178   0.184  -0.175   0.542
#>  disinterested.l1     0.056   0.125  -0.189   0.297
#>        excited.l1     0.006   0.200  -0.383   0.402
#>          upset.l1    -0.094   0.134  -0.358   0.172
#>         strong.l1     0.025   0.179  -0.335   0.376
#>       stressed.l1    -0.033   0.122  -0.271   0.203
#>          steps.l1    -0.209   0.116  -0.438   0.023
#> ---
#> upset 
#> 
#>          Relation Post.mean Post.sd Cred.lb Cred.ub
#>     interested.l1    -0.096   0.174  -0.435   0.242
#>  disinterested.l1    -0.019   0.115  -0.247   0.206
#>        excited.l1     0.050   0.186  -0.307   0.410
#>          upset.l1     0.427   0.122   0.190   0.668
#>         strong.l1     0.048   0.169  -0.284   0.389
#>       stressed.l1    -0.043   0.114  -0.264   0.177
#>          steps.l1     0.150   0.109  -0.066   0.364
#> ---
#> strong 
#> 
#>          Relation Post.mean Post.sd Cred.lb Cred.ub
#>     interested.l1     0.172   0.184  -0.194   0.527
#>  disinterested.l1     0.051   0.125  -0.199   0.295
#>        excited.l1    -0.082   0.199  -0.468   0.303
#>          upset.l1     0.058   0.133  -0.202   0.322
#>         strong.l1     0.184   0.180  -0.172   0.540
#>       stressed.l1    -0.076   0.124  -0.316   0.169
#>          steps.l1    -0.093   0.116  -0.317   0.135
#> ---
#> stressed 
#> 
#>          Relation Post.mean Post.sd Cred.lb Cred.ub
#>     interested.l1     0.011   0.170  -0.333   0.338
#>  disinterested.l1     0.091   0.116  -0.132   0.323
#>        excited.l1     0.089   0.185  -0.274   0.454
#>          upset.l1     0.312   0.122   0.076   0.555
#>         strong.l1    -0.067   0.168  -0.385   0.259
#>       stressed.l1     0.155   0.116  -0.075   0.385
#>          steps.l1     0.202   0.107  -0.010   0.410
#> ---
#> steps 
#> 
#>          Relation Post.mean Post.sd Cred.lb Cred.ub
#>     interested.l1     0.110   0.184  -0.247   0.472
#>  disinterested.l1    -0.022   0.125  -0.268   0.223
#>        excited.l1     0.101   0.199  -0.299   0.490
#>          upset.l1    -0.092   0.133  -0.349   0.169
#>         strong.l1    -0.186   0.179  -0.538   0.165
#>       stressed.l1     0.129   0.124  -0.111   0.374
#>          steps.l1     0.039   0.117  -0.194   0.270
#> ---

# }